DnaK-Sigma 32 Interaction Is Temperature-dependent
نویسندگان
چکیده
منابع مشابه
The global transcriptional response of Escherichia coli to induced sigma 32 protein involves sigma 32 regulon activation followed by inactivation and degradation of sigma 32 in vivo.
sigma(32) is the first alternative sigma factor discovered in Escherichia coli and can direct transcription of many genes in response to heat shock stress. To define the physiological role of sigma(32), we have used transcription profiling experiments to identify, on a genome-wide basis, genes under the control of sigma(32) in E. coli by moderate induction of a plasmid-borne rpoH gene under def...
متن کاملSigma 32-dependent promoter activity in vivo: sequence determinants of the groE promoter.
The Escherichia coli transcription factor sigma 32 binds to core RNA polymerase to form the holoenzyme responsible for transcription initiation at heat shock promoters, utilized upon exposure of the cell to higher temperatures. We have developed two ways to assay sigma 32-dependent RNA synthesis in E. coli. The plasmid-borne reporter gene for both is lacZ (beta-galactosidase), driven by the gro...
متن کاملDnaK-Dependent Accelerated Evolutionary Rate in Prokaryotes
Many proteins depend on an interaction with molecular chaperones in order to fold into a functional tertiary structure. Previous studies showed that protein interaction with the GroEL/GroES chaperonine and Hsp90 chaperone can buffer the impact of slightly deleterious mutations in the protein sequence. This capacity of GroEL/GroES to prevent protein misfolding has been shown to accelerate the ev...
متن کاملTranscription of Ehrlichia chaffeensis Genes Is Accomplished by RNA Polymerase Holoenzyme Containing either Sigma 32 or Sigma 70
Bacterial gene transcription is initiated by RNA polymerase containing a sigma factor. To understand gene regulation in Ehrlichia chaffeensis, an important tick-transmitted rickettsiae responsible for human monocytic ehrlichiosis, we initiated studies evaluating the transcriptional machinery of several genes of this organism. We mapped the transcription start sites of 10 genes and evaluated pro...
متن کاملDnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of sigma 32.
The Escherichia coli DnaK heat shock protein has been identified previously as a negative regulator of E. coli heat shock gene expression. We report that two other heat shock proteins, DnaJ and GrpE, are also involved in the negative regulation of heat shock gene expression. Strains carrying defective dnaK, dnaJ, or grpE alleles have enhanced synthesis of heat shock proteins at low temperature ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biological Chemistry
سال: 2002
ISSN: 0021-9258
DOI: 10.1074/jbc.m203197200